6 research outputs found

    A review of cognitive smart grid communication infrastructure system

    Get PDF
    Abstract: The reliance on obsolete communication infrastructure and outdated technologies, in order to meet increasing electricity demand, consists of major challenges confronting traditional power grids. Therefore, the concept of smart grids (SGs) has been adopted as an ideal solution. This concept entails the integration of advanced information and communication technologies (ICTs) into power grids, as well as allowing a two-way flow of communication. However, recent development in cognitive technologies internet of things (IoT) smart devices particularly in home area network (HAN) as well rapid growth in wireless applications have enabled the traffic of huge data volumes across SGs. Data gathered in SGs are distinguished by quality of service (QoS) requirements such as; latency, security, bandwidth, etc. In order to support the level of QoS requirements in SGs, stable and secure communication infrastructure is of great importance. Therefore an in-depth review of the stateof- the-art of existing and emerging communication architectures of SGs is conducted. Therefore, this work proposes communication architecture based on fifth-generation (5G) and cognitive radio networks (CRN)

    A survey on information and communications technology infrastructure for smart grids

    Get PDF
    Abstract: _Smart Grids (SGs) aim to improve the aging power system grid into a modernized grid with the utilization of the advanced communication technologies in the industry. The incorporation of communications technology in power systems enables two-way flow of electricity and information within the grid system. SGs emerge as the next generation technology in power systems, as a result of the increasing demand of upgrading the conventional grid into the more modernized grid, with the aim of resolving some of the major crisis such as the environmental and energy crisis posed by the existing grid. In order, to deploy this intelligent grid, a sustainable, energy efficient, flexible, scalable, and secure communication infrastructure need to be designed and implemented to address these issues. There are several surveys and studies on the Information and communication technologies (ICT) architectures to develop a suitable protocol of applying the proposed advanced and up-to-date communication and networking technologies into the power system, to enable the intelligence features of the grid system. This paper reviews the works on communications technologies on SGs, with the objective of addressing the issues related to ICT infrastructure, and the recent communication technologies with their corresponding communication requirements

    Edge intelligence in smart grids : a survey on architectures, offloading models, cyber security measures, and challenges

    Get PDF
    The rapid development of new information and communication technologies (ICTs) and the deployment of advanced Internet of Things (IoT)-based devices has led to the study and implementation of edge computing technologies in smart grid (SG) systems. In addition, substantial work has been expended in the literature to incorporate artificial intelligence (AI) techniques into edge computing, resulting in the promising concept of edge intelligence (EI). Consequently, in this article, we provide an overview of the current state-of-the-art in terms of EI-based SG adoption from a range of angles, including architectures, computation offloading, and cybersecurity c oncerns. The basic objectives of this article are fourfold. To begin, we discuss EI and SGs separately. Then we highlight contemporary concepts closely related to edge computing, fundamental characteristics, and essential enabling technologies from an EI perspective. Additionally, we discuss how the use of AI has aided in optimizing the performance of edge computing. We have emphasized the important enabling technologies and applications of SGs from the perspective of EI-based SGs. Second, we explore both general edge computing and architectures based on EI from the perspective of SGs. Thirdly, two basic questions about computation offloading are discussed: what is computation offloading and why do we need it? Additionally, we divided the primary articles into two categories based on the number of users included in the model, either a single user or a multiple user instance. Finally, we review the cybersecurity threats with edge computing and the methods used to mitigate them in SGs. Therefore, this survey comes to the conclusion that most of the viable architectures for EI in smart grids often consist of three layers: device, edge, and cloud. In addition, it is crucial that computation offloading techniques must be framed as optimization problems and addressed effectively in order to increase system performance. This article typically intends to serve as a primer for emerging and interested scholars concerned with the study of EI in SGs.The Council for Scientific and Industrial Research (CSIR).https://www.mdpi.com/journal/jsanElectrical, Electronic and Computer Engineerin

    A Review of Cognitive Radio Smart Grid Communication Infrastructure Systems

    No full text
    The cognitive smart grid (SG) communication paradigm aims to mitigate quality of service (QoS) issues in obsolete communication architecture associated with the conventional electrical grid. This paradigm entails the integration of advanced information and communication technologies (ICTs) into power grids, enabling a two-way flow of information. However, due to the exponential increase in wireless applications and services, also driven by the deployment of the Internet of Things (IoT) smart devices, SG communication systems are expected to handle large volumes of data. As a result, the operation of SG networks is confronted with the major challenge of managing and processing data in a reliable and secure manner. The existing works in the literature proposed architectures with the objective to mitigate the underlying QoS issues such as latency, bandwidth, data congestion, energy efficiency, etc. In addition, a variety of communication technologies have been analyzed for their capacity to support stringent QoS requirements for diverse SGs environments. This notwithstanding, a standard architecture designed to mitigate the aforementioned issues for SG networks remains a work-in-progress. The main objective of this paper is to investigate the emerging technologies such as cognitive radio networks (CRNs) as part of the Fifth-Generation (5G) mobile technology for reliable communication in SG networks. Furthermore, a hybrid architecture based on the combination of fog computing and cloud computing is proposed. In this architecture, real-time latency-sensitive information is given high priority, with fog edge based servers deployed in close proximity to home area networks (HANs) for preprocessing and analyzing of information collected from smart IoT devices. In comparison to the recent works in the literature, which are mainly based on CRNs and 5G separately, the proposed architecture in this paper incorporates the combination of CRNs and 5G for reliable and efficient communication in SG networks

    Edge Intelligence in Smart Grids: A Survey on Architectures, Offloading Models, Cyber Security Measures, and Challenges

    No full text
    The rapid development of new information and communication technologies (ICTs) and the deployment of advanced Internet of Things (IoT)-based devices has led to the study and implementation of edge computing technologies in smart grid (SG) systems. In addition, substantial work has been expended in the literature to incorporate artificial intelligence (AI) techniques into edge computing, resulting in the promising concept of edge intelligence (EI). Consequently, in this article, we provide an overview of the current state-of-the-art in terms of EI-based SG adoption from a range of angles, including architectures, computation offloading, and cybersecurity concerns. The basic objectives of this article are fourfold. To begin, we discuss EI and SGs separately. Then we highlight contemporary concepts closely related to edge computing, fundamental characteristics, and essential enabling technologies from an EI perspective. Additionally, we discuss how the use of AI has aided in optimizing the performance of edge computing. We have emphasized the important enabling technologies and applications of SGs from the perspective of EI-based SGs. Second, we explore both general edge computing and architectures based on EI from the perspective of SGs. Thirdly, two basic questions about computation offloading are discussed: what is computation offloading and why do we need it? Additionally, we divided the primary articles into two categories based on the number of users included in the model, either a single user or a multiple user instance. Finally, we review the cybersecurity threats with edge computing and the methods used to mitigate them in SGs. Therefore, this survey comes to the conclusion that most of the viable architectures for EI in smart grids often consist of three layers: device, edge, and cloud. In addition, it is crucial that computation offloading techniques must be framed as optimization problems and addressed effectively in order to increase system performance. This article typically intends to serve as a primer for emerging and interested scholars concerned with the study of EI in SGs

    AutoElbow: An Automatic Elbow Detection Method for Estimating the Number of Clusters in a Dataset

    No full text
    The elbow technique is a well-known method for estimating the number of clusters required as a starting parameter in the K-means algorithm and certain other unsupervised machine-learning algorithms. However, due to the graphical output nature of the method, human assessment is necessary to determine the location of the elbow and, consequently, the number of data clusters. This article presents a simple method for estimating the elbow point, thus, enabling the K-means algorithm to be readily automated. First, the elbow-based graph is normalized using the graph’s minimum and maximum values along the ordinate and abscissa coordinates. Then, the distance between each point on the graph to the minimum (i.e., the origin) and maximum reference points, and the “heel” of the graph are calculated. The estimated elbow location is, thus, the point that maximizes the ratio of these distances, which corresponds to an approximate number of clusters in the dataset. We demonstrate that the strategy is effective, stable, and adaptable over different types of datasets characterized by small and large clusters, different cluster shapes, high dimensionality, and unbalanced distributions. We provide the clustering community with a description of the method and present comparative results against other well-known methods in the prior state of the art
    corecore